
Package: incubate (via r-universe)
September 15, 2024

Title Parametric Time-to-Event Analysis with Variable Incubation
Phases

Version 1.3.0

Date 2024-08-16

Description Fit parametric models for time-to-event data that show an
initial 'incubation period', i.e., a variable delay phase where
the hazard is zero. The delayed Weibull distribution serves as
foundational data model. The specific method of 'MPSE' (maximum
product of spacings estimation) and MLE-based methods are used
for parameter estimation. Bootstrap confidence intervals for
parameters and significance tests in a two group setting are
provided.

License LGPL (>= 3)

Encoding UTF-8

LazyData true

Roxygen list(markdown = TRUE)

Imports future (>= 1.21), future.apply (>= 1.6), glue (>= 1.4), MASS,
purrr (>= 0.3), rlang (>= 0.4), stats, survival, tibble

Suggests boot, dplyr, future.callr, ggplot2 (>= 3.3), knitr, testthat
(>= 3.0.0), tidyr, withr

URL https://gitlab.com/imb-dev/incubate/

BugReports https://gitlab.com/imb-dev/incubate/-/issues/

RoxygenNote 7.3.2

Config/testthat/edition 3

Depends R (>= 3.5.0)

Collate 'data.R' 'delay_estimation.R' 'delay.R' 'delay_test.R'
'incubate-package.R' 'utils.R'

Repository https://lenz99.r-universe.dev

RemoteUrl https://gitlab.com/imb-dev/incubate

RemoteRef HEAD

RemoteSha 1330b240075acffa41c8c8aff6651bcee256f2f0

1

https://gitlab.com/imb-dev/incubate/
https://gitlab.com/imb-dev/incubate/-/issues/

2 as_percent

Contents
as_percent . 2
bsDataStep . 3
coef.incubate_fit . 3
confint.incubate_fit . 4
DelayedExponential . 5
DelayedWeibull . 7
delay_fit . 10
delay_model . 11
estimRoundingError . 12
getDist . 12
minObjFunPORT . 13
objFunFactory . 14
power_diff . 15
publication_examples . 16
scalePars . 18
stankovic . 18
test_diff . 19
test_GOF . 20
transform.incubate_fit . 21
update.incubate_fit . 21

Index 23

as_percent Format a number as percentage.

Description

Internal helper function that is not exported.

Usage

as_percent(x, digits = 1)

Arguments

x numeric vector to be formated as percentage

digits requested number of decimal digits of the percentage

Value

number formatted as percentage character

bsDataStep 3

bsDataStep Generate bootstrap distribution of model parameters to fitted incubate
model.

Description

Bootstrap data are here estimated coefficients from models fitted to bootstrap samples. The boot-
strap data is used to make bootstrap inference in the second step. It is an internal function, the main
entry point is confint.incubate_fit().

Usage

bsDataStep(
object,
bs_data = c("parametric", "ordinary"),
R,
useBoot = FALSE,
smd_factor = 0.25

)

Arguments

object an incubate_fit-object

bs_data character. Which type of bootstrap method to generate data?

R integer. Number of bootstrapped model coefficient estimates

useBoot flag. Do you want to use the boot-package? Default value is FALSE.

smd_factor numeric. smooth-delay factor: influence the amount of smoothing. 0 means no
smoothing at all. Default is 0.25 (as was optimal in simulation for log-quantile
together with log-delay-shift = 5)

Value

bootstrap data, either as matrix or of class boot (depending on the useBoot-flag)

coef.incubate_fit Coefficients of a delay-model fit.

Description

Coefficients of a delay-model fit.

Usage

S3 method for class 'incubate_fit'
coef(object, transformed = FALSE, group = NULL, ...)

4 confint.incubate_fit

Arguments

object object that is a incubate_fit

transformed flag. Do we request the transformed parameters as used within the optimization?

group character string to request the canonical parameter for one group

... further arguments, currently not used.

Value

named coefficient vector

confint.incubate_fit Confidence intervals for parameters of incubate-model fits.

Description

Bias-corrected bootstrap confidence limits (either quantile-based or normal-approximation based)
are generated. Optionally, there are also variants that use a log-transformation first. At least R=1000
bootstrap replications are recommended. Default are quantile-based confidence intervals that inter-
nally use a log-transformation.

Usage

S3 method for class 'incubate_fit'
confint(
object,
parm,
level = 0.95,
R = 199L,
bs_data,
bs_infer = c("logquantile", "lognormal", "quantile", "quantile0", "normal", "normal0"),
useBoot = FALSE,
...

)

Arguments

object object of class incubate_fit

parm character. Which parameters to get confidence interval for?

level numeric. Which is the requested confidence level for the interval? Default value
is 0.95

R number of bootstrap replications. Used only if not bs_data-object is provided.

bs_data character or bootstrap data object. If character, it specifies which type of boot-
strap is requested and the bootstrap data will be generated. Data can also be
provided here directly. If missing it uses parametric bootstrap.

DelayedExponential 5

bs_infer character. Which type of bootstrap inference is requested to generate the confi-
dence interval?

useBoot logical. Delegate bootstrap confint calculation to the boot-package?

... further arguments, currently not used.

Value

A matrix (or vector) with columns giving lower and upper confidence limits for each parameter.

DelayedExponential Delayed Exponential Distribution

Description

Density, distribution function, quantile function, random generation and restricted mean survival
time function for the delayed exponential distribution. There is an initial delay phase (parameter
delay1) where no events occur. After that, rate1 applies. Optionally, a second phase is possible
where the hazard rate might change (parameters delay2 and rate2).

Usage

dexp_delayed(
x,
delay1 = 0,
rate1 = 1,
delay2 = NULL,
rate2 = NULL,
delay = delay1,
rate = rate1,
log = FALSE

)

pexp_delayed(
q,
delay1 = 0,
rate1 = 1,
delay2 = NULL,
rate2 = NULL,
delay = delay1,
rate = rate1,
...

)

qexp_delayed(
p,
delay1 = 0,

6 DelayedExponential

rate1 = 1,
delay2 = NULL,
rate2 = NULL,
delay = delay1,
rate = rate1,
lower.tail = TRUE,
log.p = FALSE

)

rexp_delayed(
n,
delay1 = 0,
rate1 = 1,
delay2 = NULL,
rate2 = NULL,
delay = delay1,
rate = rate1

)

mexp_delayed(
t = +Inf,
delay1 = 0,
rate1 = 1,
delay2 = NULL,
rate2 = NULL,
delay = delay1,
rate = rate1

)

Arguments

x A numeric vector of values for which to get the density.

delay1 numeric. The first delay, must be non-negative.

rate1 numeric. The event rate, must be non-negative.

delay2 numeric. The second delay, must be non-negative.

rate2 numeric. The second event rate, must be non-negative.

delay numeric. Alias for first delay.

rate numeric. Alias for first rate.

log logical. Return value on log-scale?

q A numeric vector of quantile values.

... further arguments are passed on to the underlying non-delayed function, e.g.,
lower.tail= to stats::pexp()

p A numeric vector of probabilities.

lower.tail logical. Give cumulative probability of lower tail?

log.p logical. P-value on log-sclae?

DelayedWeibull 7

n integer. Number of random observations requested.

t A numeric vector of times that restrict the mean survival. Default is +Inf, i.e.,
the unrestricted mean survival time.

Details

Additional arguments are forwarded via ... to the underlying functions of the exponential distri-
bution in the stats-package. If only a single initial delay phase is there, the numerical arguments
other than n are recycled to the length of the result (as with the exponential distribution in stats).
With two phases, the arguments are not recycled. Only the first element of delays and rates are
used as it otherwise becomes ambiguous which delay and rate parameter apply for observations in
different phases. Generally, only the first elements of the logical arguments are used.

Value

Functions pertaining to the delayed exponential distribution:

• dexp_delayed gives the density

• pexp_delayed gives the distribution function

• qexp_delayed gives the quantile function

• rexp_delayed generates a pseudo-random sample

• mexp_delayed gives the restricted mean survival time

The length of the result is determined by n for rexp_delayed, and is the maximum of the lengths of
the numerical arguments for the other functions, R’s recycling rules apply when only single initial
delay phase is used.

See Also

stats::Exponential

DelayedWeibull Delayed Weibull Distribution

Description

Density, distribution function, quantile function and random generation for the delayed Weibull dis-
tribution. Besides the additional parameter delay, the other two Weibull-parameters are in principle
retained as in R’s stats-package:

• shape

• scale (as inverse of rate)

8 DelayedWeibull

Usage

dweib_delayed(
x,
delay1,
shape1,
scale1 = 1,
delay2 = NULL,
shape2 = NULL,
scale2 = 1,
delay = delay1,
shape = shape1,
scale = scale1,
log = FALSE

)

pweib_delayed(
q,
delay1,
shape1,
scale1 = 1,
delay2 = NULL,
shape2 = NULL,
scale2 = 1,
delay = delay1,
shape = shape1,
scale = scale1,
lower.tail = TRUE,
log.p = FALSE

)

qweib_delayed(
p,
delay1,
shape1,
scale1 = 1,
delay2 = NULL,
shape2 = NULL,
scale2 = 1,
delay = delay1,
shape = shape1,
scale = scale1,
lower.tail = TRUE,
log.p = FALSE

)

rweib_delayed(
n,
delay1,

DelayedWeibull 9

shape1,
scale1 = 1,
delay2 = NULL,
shape2 = NULL,
scale2 = 1,
delay = delay1,
shape = shape1,
scale = scale1

)

mweib_delayed(
t = +Inf,
delay1,
shape1,
scale1 = 1,
delay2 = NULL,
shape2 = NULL,
scale2 = 1,
delay = delay1,
shape = shape1,
scale = scale1

)

Arguments

x A numeric vector of values for which to get the density.

delay1 numeric. The first delay, must be non-negative.

shape1 numeric. First shape parameter, must be positive.

scale1 numeric. First scale parameter (inverse of rate), must be positive.

delay2 numeric. The second delay, must be non-negative.

shape2 numeric. The second shape parameter, must be non-negative.

scale2 numeric. The second scale parameter (inverse of rate), must be positive.

delay numeric. Alias for first delay.

shape numeric. Alias for first shape.

scale numeric. Alias for first scale.

log logical. Return value on log-scale?

q A numeric vector of quantile values.

lower.tail logical. Give cumulative probability of lower tail?

log.p logical. P-value on log-sclae?

p A numeric vector of probabilities.

n integer. Number of random observations requested.

t A numeric vector of times that restrict the mean survival. Default is +Inf, i.e.,
the unrestricted mean survival time.

10 delay_fit

Details

Additional arguments are forwarded via ... to the underlying functions of the exponential distri-
bution in the stats-package.

The numerical arguments other than n are recycled to the length of the result. Only the first elements
of the logical arguments are used.

Value

Functions pertaining to the delayed Weibull distribution:

• dweib_delayed gives the density

• pweib_delayed gives the distribution function

• qweib_delayed gives the quantile function

• rweib_delayed generates a pseudo-random sample

• mweib_delayed gives the restricted mean survival time

The length of the result is determined by n for rweib_delayed, and is the maximum of the lengths
of the numerical arguments for the other functions, R’s recycling rules apply.

delay_fit Fit optimal parameters according to the objective function (either
MPSE or MLE-based).

Description

The objective function carries the given data in its environment and it is to be minimized. R’s
standard routine stats::optim does the numerical optimization, using numerical derivatives. or
the analytical solution is returned directly if available.

Usage

delay_fit(objFun, optim_args = NULL, verbose = 0)

Arguments

objFun objective function to be minimized

optim_args list of own arguments for optimization. If NULL it uses the default optim argu-
ments associated to the objective function.

verbose integer that indicates the level of verboseness. Default 0 is quiet.

Value

optimization object including a named parameter vector or NULL in case of errors during optimiza-
tion

delay_model 11

delay_model Fit a delayed Exponential or Weibull model to one or two given sam-
ple(s).

Description

Maximum product of spacings estimation is used by default to fit the parameters. Estimation via
naive maximum likelihood (method = 'MLEn) is available, too, but MLEn yields biased estimates.
MLEc is a corrected version of MLE due to Cheng.

Usage

delay_model(
x = stop("Specify observations for at least one group x=!", call. = FALSE),
y = NULL,
distribution = c("exponential", "weibull"),
twoPhase = FALSE,
bind = NULL,
ties = c("density", "equidist", "random", "error"),
method = c("MPSE", "MLEn", "MLEw", "MLEc"),
profiled = method == "MLEw",
optim_args = NULL,
verbose = 0

)

Arguments

x numeric. observations of 1st group. Can also be a list of data from two groups.

y numeric. observations from 2nd group

distribution character. Which delayed distribution is assumed? Exponential or Weibull.

twoPhase logical. Allow for two phases?

bind character. parameter names that are bind together in 2-group situation.

ties character. How to handle ties.

method character. Which method to fit the model? ’MPSE’ = maximum product of spac-
ings estimation or ’MLEn’ = naive maximum likelihood estimation or ’MLEw’
= weighted MLE’ or MLEc’ = corrected MLE

profiled logical. Profile out scale from log-likelihood if possible.

optim_args list. optimization arguments to use. Use NULL to use the data-dependent default
values.

verbose integer. level of verboseness. Default 0 is quiet.

Details

Numerical optimization is done by stats::optim.

12 getDist

Value

incubate_fit the delay-model fit object. Or NULL if optimization failed (e.g. too few observa-
tions).

estimRoundingError Estimate rounding error based on given sample of metric values The
idea is to check at which level of rounding the sample values do not
change.

Description

Estimate rounding error based on given sample of metric values The idea is to check at which level
of rounding the sample values do not change.

Usage

estimRoundingError(obs, roundDigits = seq.int(-4L, 6L), maxObs = 100L)

Arguments

obs numeric. Metric values from a sample to estimate the corresponding rounding
error

roundDigits integer. Which level of rounding to test? Negative numbers round to corre-
sponding powers of 10

maxObs integer. How many observations to consider at most? If the provided sample has
more observations a sub-sample is used.

Value

estimated rounding error

getDist Get delay distribution function

Description

Get delay distribution function

minObjFunPORT 13

Usage

getDist(
distribution = c("exponential", "weibull"),
type = c("cdf", "prob", "density", "random", "param"),
twoPhase = FALSE,
twoGroup = FALSE,
bind = NULL,
profiled = FALSE,
transformed = FALSE

)

Arguments

distribution character(1). delay distribution.
type character(1). type of function, cdf: cumulative distribution function, density or

random function
twoPhase logical(1). For type='param', do we model two phases?
twoGroup logical(1). For type=’param’, do we have two groups?
bind character. For type=’param’, names of parameters that are bind between the two

groups.
profiled logical(1). For type=’param’, do we request profiling?
transformed logical(1). For type=’param’, do we need parameter names transformed (as used

inside the optimization function?)

Value

selected distribution function or parameter names

minObjFunPORT Minimize an objective function with PORT routine (nlminb)

Description

Minimize an objective function with PORT routine (nlminb)

Usage

minObjFunPORT(objFun, start, lower = -Inf, upper = +Inf, verbose = 0)

Arguments

objFun objective function
start numeric vector of parameter values to start optimization
lower numeric. lower bound for parameters (boxed constraint)
upper numeric. upper bound for parameters (boxed constraint)
verbose numeric. Verbosity level.

14 objFunFactory

objFunFactory Factory method for objective function, either according to maximum
product of spacings estimation (’MPSE’) or according to some flavour
of maximum likelihood estimation (e.g., naive (’MLEn’) or corrected
(’MLEc’) or weighted (’MLEw’) MLE).

Description

Given the observed data this factory method produces an objective function which is either the
negative of the MPSE-criterion H or the negative log-likelihood for MLE.

Usage

objFunFactory(
x,
y = NULL,
distribution = c("exponential", "weibull"),
twoPhase = FALSE,
bind = NULL,
method = c("MPSE", "MLEn", "MLEc", "MLEw"),
profiled = FALSE,
ties = c("density", "equidist", "random", "error"),
verbose = 0

)

Arguments

x numeric. observations

y numeric. observations in second group.

distribution character(1). delayed distribution family

twoPhase logical flag. Do we allow for two delay phases where event rate may change?
Default is FALSE, i.e., a single delay phase.

bind character. parameter names that are bind together (i.e. equated) between both
groups

method character(1). Specifies the method for which to build the objective function.
Default value is MPSE. MLEn is the naive MLE-method, calculating the likelihood
function as the product of density values. MLEc is the modified MLE.

profiled logical. Should scale parameter be profiled out prior to optimization?

ties character. How to handle ties within data of a group.

verbose integer flag. How much verbosity in output? The higher the more output. De-
fault value is 0 which is no output.

power_diff 15

Details

The objective function takes a vector of model parameters as argument.

From the observations, negative or infinite values are discarded during pre-processing. In any case,
the objective function is to be minimized.

Value

the objective function (e.g., the negative MPSE criterion) for given choice of model parameters or
NULL upon errors

power_diff Power simulation function for a two-group comparison of the delay
parameter.

Description

There are two ways of operation:

1. power=NULL Given sample size n it simulates the power.

2. n=NULL Given a power an iterative search is started to find a suitable n within a specified range.

Usage

power_diff(
distribution = c("exponential", "weibull"),
twoPhase = FALSE,
param = "delay1",
test = c("bootstrap", "pearson", "moran", "logrank", "logrank_pp", "LR"),
eff = stop("Provide parameters for both groups that reflect the effect!"),
n = NULL,
r = 1,
sig.level = 0.05,
power = NULL,
nPowerSim = 1600,
R = 201,
nRange = c(5, 50),
verbose = 0

)

Arguments

distribution character. Which assumed distribution is used for the power calculation.

twoPhase logical(1). Do we model two phases per group? Default is FALSE, i.e. a single
delay phase per group.

param character. Parameter name(s) which are to be tested for difference and for which
to simulate the power. Default value is 'delay1'.

16 publication_examples

test character. Which test to use for this power estimation?

eff list. The two list elements contain the model parameters (as understood by the
delay-distribution functions provided by this package) for the two groups.

n integer. Number of observations per group for the power simulation or NULL
when n is to be estimated for a given power.

r numeric. Ratio of both groups sizes, ny / nx. Default value is 1, i.e., balanced
group sizes. Must be positive.

sig.level numeric. Significance level. Default is 0.05.

power numeric. NULL when power is to be estimated for a given sample size or a desired
power is specified (and n is estimated).

nPowerSim integer. Number of simulation rounds. Default value 1600 yields a standard
error of 0.01 for power if the true power is 80%.

R integer. Number of bootstrap samples for test of difference in parameter within
each power simulation. It affects the resolution of the P-value for each simula-
tion round. A value of around R=200 gives a resolution of 0.5% which might be
enough for power analysis.

nRange integer. Admissible range for sample size when power is pre-specified and sam-
ple size is requested.

verbose numeric. How many details are requested? Higher value means more details.
0=off, no details.

Details

In any case, the distribution, the parameters that are tested for, the type of test and the effect size
(eff=) need to be specified. The more power simulation rounds (parameter nPowerSim=) the more
densely the space of data according to the specified model is sampled.

Note that this second modus (when n is estimated) is computationally quite heavy. The iterative
search for n uses some heuristics and the estimated sample size might actually give a different
power-level. It is important to check the stated power in the output. The search algorithm comes to
results closer to the power aimed at when the admissible range for sample size (nRange=) is chosen
sensibly. In case the estimated sample size and the achieved power is too high it might pay off to
rerun the function with an adapted admissible range.

Value

List of results of power simulation. Or NULL in case of errors.

publication_examples Small data sets from different publications

Description

Most data sets come from publications about parameter estimation in Weibull models. See the
references in the section "Source" below.

publication_examples 17

Usage

publication_examples

fatigue

susquehanna

pollution

Format

An object of class numeric of length 4.

An object of class numeric of length 10.

An object of class numeric of length 20.

An object of class numeric of length 20.

Details

These small data sets are provided as numeric vectors.

rockette: Artificial sample of length 4 given by Rockette. The maximum likelihood function has
two stationary points, none of them is the global maximum.

fatigue: Fatigue times of ten bearings of a specific type in hours.

susquehanna: Maximum flood levels (in millions of cubic feet per second) for the Susquehanna
River of Harrisburg (Pennsylvania, USA) over 20 4-year periods.

pollution: Beach pollution levels in South Wales (measured in number of coliform per 100 ml)
on 20 days over a 5-week period.

Source

McCool, J.I., 1974. Inferential techniques for Weibull populations. Technical Report TR 74-0180,
Wright Patterson Air Force Base, Ohio.

Rockette, H., 1974. Maximum Likelihood Estimation with the Weibull Model.

Dumonceaux, R. and Antle, C. E., 1973. Discrimination between the lognormal and the Weibull
distributions. Technometrics, 15, 923-926.

Steen, P. J. and Stickler, D. J., 1976. A Sewage Pollution Study of Beaches from Cardiff to Ogmore.
Report January 1976, Cardiff: Department of Applied Biology, UWIST.

18 stankovic

scalePars Calculate parameter scaling for optimization routine.

Description

The scale per parameter corresponds to the step width within the optimization path.

Usage

scalePars(parV, lowerB = 0.00001, upperB = 100000)

Arguments

parV named numeric parameter vector for optimization

lowerB numeric. lower bound for parameter scales

upperB numeric. upper bound for parameter scales

Value

vector of parameter scaling

stankovic Survival of mice with glioma under different treatments

Description

This data set stems from an animal experiment described in Stankovic (2018). In particular, the data
in question is shown in Figure 6J and 6K.

Usage

stankovic

Format

Figure The figure in the publication where the data is shown

Time Survival in days

Status Right-censor status: 1 means observed event

Group Experimental group identifier

Colour Colour used in the Stankovic publication to mark this group

Details

The data were read directly from the survival plots in the publication with the help of Plot Digitizer,
version 2.6.9.

test_diff 19

Source

Dudvarski Stankovic N, Bicker F, Keller S, et al. EGFL7 enhances surface expression of integrin
a5b1 to promote angiogenesis in malignant brain tumors. EMBO Mol Med. 2018;10(9):e8420.
doi:10.15252/emmm.201708420 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6127886/

test_diff Test the difference for delay model parameter(s) between two uncor-
related groups, based on maximum product of spacings estimation
(MPSE).

Description

It is in fact a model comparison between a null model where the parameters are enforced to be
equal and an unconstrained full model. As test statistic we use twice the difference in best (=low-
est) objective function value, i.e. 2 * (val_0 - val_1). This is reminiscent of a likelihood ratio
test statistic albeit the objective function is not a negative log-likelihood but the negative of the
maximum product spacing metric.

Usage

test_diff(
x,
y = stop("Provide data for group y!"),
distribution = c("exponential", "weibull"),
twoPhase = FALSE,
method = c("MPSE", "MLEn", "MLEw", "MLEc"),
profiled = method == "MLEw",
ties = c("density", "equidist", "random", "error"),
param = "delay1",
type = c("all", "bootstrap", "GOF", "moran", "pearson", "logrank", "LR"),
doLogrank = TRUE,
R = 400,
chiSqApprox = FALSE,
verbose = 0

)

Arguments

x data from reference/control group.

y data from the treatment group.

distribution character(1). Name of the parametric delay distribution to use.

twoPhase logical(1). Do we model two phases per group? Default is FALSE, i.e. a single
delay phase per group.

method character. Which method to fit the models.

profiled logical. Use the profiled likelihood?

20 test_GOF

ties character. How to handle ties in data vector of a group?

param character. Names of parameters to test difference for. Default value is 'delay1'.

type character. Which type of tests to perform?

doLogrank logical. In any case do log-rank based tests?

R numeric(1). Number of bootstrap samples to evaluate the distribution of the test
statistic.

chiSqApprox logical flag. In bootstrap, should we calculate the approximate degrees of free-
dom for the distribution of the test statistic under H0?

verbose numeric. How many details are requested? Higher value means more details.
0=off, no details.

Details

High values of this difference speak against the null-model (i.e. high val_0 indicates bad fit under
0-model and low values of val_1 indicate a good fit under the more general model1. The test is
implemented as a parametric bootstrap test, i.e. we

1. take given null-model fit as ground truth

2. regenerate data according to this model.

3. recalculate the test statistic

4. appraise the observed test statistic in light of the generated distribution under H0

Value

list with the results of the test. Element P contains the different P-values, for instance from para-
metric bootstrap

test_GOF Goodness-of-fit (GOF) test statistic.

Description

The GOF-test is performed for a fitted delay-model. There are different GOF-tests implemented:

• Moran GOF is based on spacings, like the MPSE-criterion itself.

• Pearson GOF uses categories and compares observed to expected frequencies.

Usage

test_GOF(delayFit, method = c("moran", "pearson"))

Arguments

delayFit delay_model fit

method character(1). which method to use for GOF. Default is ’moran’.

transform.incubate_fit 21

Value

An htest-object containing the GOF-test result

transform.incubate_fit

Transform observed data to unit interval

Description

The transformation is the probability integral transform. It uses the cumulative distribution function
with the estimated parameters of the model fit. All available data in the model fit is transformed.

Usage

S3 method for class 'incubate_fit'
transform(`_data`, ...)

Arguments

_data a fitted model object of class incubate_fit

... currently ignored

Value

The transformed data, either a vector (for single group) or a list with entries x and y (in two group
scenario)

Note

This S3-method implementation is quite different from its default method that allows for non-
standard evaluation on data frames, primarily intended for interactive use. But the name transform
fits so nicely to the intended purpose that it is re-used for the probability integral transform, here.

update.incubate_fit Refit an incubate_fit-object with specified optimization arguments.
If more things need to be changed go back to delay_model and start
from scratch.

Description

Refit an incubate_fit-object with specified optimization arguments. If more things need to be
changed go back to delay_model and start from scratch.

22 update.incubate_fit

Usage

S3 method for class 'incubate_fit'
update(object, optim_args = NULL, verbose = 0, ...)

Arguments

object incubate_fit-object

optim_args optimization arguments

verbose integer flag. Requested verbosity during delay_fit

... further arguments, currently not used.

Value

The updated fitted object of class incubate_fit

Index

∗ datasets
publication_examples, 16
stankovic, 18

∗ distribution
DelayedExponential, 5
DelayedWeibull, 7

as_percent, 2

bsDataStep, 3

coef.incubate_fit, 3
confint.incubate_fit, 4
confint.incubate_fit(), 3

delay_fit, 10
delay_model, 11
DelayedExponential, 5
DelayedWeibull, 7
dexp_delayed (DelayedExponential), 5
dweib_delayed (DelayedWeibull), 7

estimRoundingError, 12

fatigue (publication_examples), 16

getDist, 12

mexp_delayed (DelayedExponential), 5
minObjFunPORT, 13
mweib_delayed (DelayedWeibull), 7

objFunFactory, 14

pexp_delayed (DelayedExponential), 5
pollution (publication_examples), 16
power_diff, 15
publication_examples, 16
pweib_delayed (DelayedWeibull), 7

qexp_delayed (DelayedExponential), 5
qweib_delayed (DelayedWeibull), 7

rexp_delayed (DelayedExponential), 5
rockette (publication_examples), 16
rweib_delayed (DelayedWeibull), 7

scalePars, 18
stankovic, 18
stats::pexp(), 6
susquehanna (publication_examples), 16

test_diff, 19
test_GOF, 20
transform.incubate_fit, 21

update.incubate_fit, 21

23

	as_percent
	bsDataStep
	coef.incubate_fit
	confint.incubate_fit
	DelayedExponential
	DelayedWeibull
	delay_fit
	delay_model
	estimRoundingError
	getDist
	minObjFunPORT
	objFunFactory
	power_diff
	publication_examples
	scalePars
	stankovic
	test_diff
	test_GOF
	transform.incubate_fit
	update.incubate_fit
	Index

